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A technique of orthogonal mapping is proposed for constructing boundary-fitted orthogonal 
curvilinear coordinate systems in 2-D. The mapping is defined by the couariant Laplace 
equation, and constraints on the components of the metric tensor of the curvilinear coor- 
dinates are used to achieve orthogonality and to control the spacing of coordinate lines. Two 
different methods of implementing the mapping are presented. The first, termed the strong 
constraint method, is intended primarily for problems in which the boundary shape is not 
known in advance, but is to be determined as a part of the solution (e.g., free boundary 
problems in fluid mechanics). The second, termed the weak constraint method, is designed for 
the construction of an orthogonal mapping with a prescribed boundary correspondence, i.e., 
the production of boundary-fitted orthogonal coordinates for a domain of given shape with a 
prescribed distribution of coordinate nodes along the boundary. The method is illustrated by 
numerical examples, and it is shown that the problem of mapping infinite domains can be 
treated by mapping the infinite domain onto a finite one using a simple conformal transfor- 
mation and then applying the orthogonal mapping technique developed here to the finite 
domain. The possibility of obtaining analytical solutions for the mapping functions is 
discussed. The Appendices contain connection (Christoffel) coefficients which provide a 
convenient means for deriving equations of a physical problem for the constructed coordinates 
in terms of physical components, using a slight extension of Cartesian tensor notation. 

1. INTRODUCTION 

The construction of a curvilinear coordinate system in which a boundary of 
arbitrary shape is represented by a coordinate line or surface is an important problem 
of applied mathematics. The best-known approach to this problem is typified by the 
method of Thompson et al. [ 1,2], who also review previous research. In the 
Thompson et al. method [2], the transform relations ((x, y) and ~(x, y) between 
Cartesian coordinates x, y and “boundary-fitted” curvilinear coordinates & q are 
assumed to satisfy elliptic equations of the form 

where the functions P(& q) and Q(& r) are chosen (essentially by trial and error) to 
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control the spacing and configuration of coordinate lines in the domain of interest. It 
is suggested that “sums of decaying exponential? provide a convenient form for P 
and Q, but the choice is otherwise ad hoc. To actually carry out the transformation, a 
set of coupled, nonlinear partial differential equations is derived for x(4, q) and y(& q) 
from (1) by direct interchange of dependent and independent variables, and these 
equations are then solved numerically. Though undoubtedly useful, the Thompson et 
al. approach has the severe drawback, when applied to the numerical solution of 
differential equations from mathematical physics, of yielding a nonorthogonal 
coordinate system. In addition, the only control over spacing and configuration of 
coordinate lines is exercised by the ad hoc choice of P(& q) and Q(& q). 

We consider the development of a method to generate orthogonal (boundary-fitted) 
coordinates. With this objective, the first and classical candidate in 2-D is, of course, 
conformal mapping. Indeed, efficient methods for numerical construction of 
conformal mappings have been developed (see [3,4] and references therein); 
however, as Fornberg [3] points out, conformal mappings are ill-conditioned in the 
sense that very small changes in the shape of the domain can dramatically alter the 
position of mapped boundary points. Also, the density of boundary points (placed 
uniformly in the c[, u plane) may vary by several orders of magnitude along the 
boundaries of the original x, y domain. Examples given by Fornberg [3, Figs. 1 and 
71 show clearly that conformal mapping can yield coordinate grids which are 
completely unsuitable for numerical solution of partial differential equations. 

The problem with conformal mapping is that the dual requirements of 
orthogonality and equality of the scale factors (so that a small square in the <, q 
plane is mapped onto a square in the physical x, y plane) are too restrictive. Hung 
and Brown [5] and Pope [6] have attempted to alleviate this problem by constructing 
orthogonal mappings in which the ratio of scale factors is not unity but rather some 
(adjustable) constant throughout the domain, However, the use of a constant ratio of 
scale factors is still too restrictive for a generally applicable transformation technique, 
and Mobley and Stewart [ 71 have thus suggested construction of an orthogonal 
mapping by nonuniform stretching of the conformal coordinates. The coordinates of 
Mobley and Stewart are thus a pair of variables, each of which is a monotonic 
function of a respective conformal variable. By eliminating the “intermediate” 
conformal variables, Mobley and Stewart obtained generating equations for their 
transformation functions. As will be seen in Sections 2 and 4, this procedure can lead 
to basically the same types of grids as the “strong constraint” subclass of the present 
method and the generating equation of Mobley and Stewart is just a covariant 
Laplace equation, though this important fact could not be recognized in the 
framework of their approach. Most recently, Haussling and Coleman [8] have 
attempted to produce orthogonal coordinate grids in two dimensions with prescribed 
nodal correspondence on all boundaries, using a pair of differential constraints on the 
mapping functions ~(6 rl), ~(417) which are equivalent to our orthogonality 
constraint g,, = 0 (see Section 2). The single constraint of orthogonality is, however, 
insufficient to completely specify a mapping in two-dimensions, and the resulting 
procedure exhibits a number of problems including nonorthogonal mesh. One 
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example, which is treated successfully by the method outlined in this paper (see 
Figs. 7 and 8), led to a completely unacceptable mesh in Haussling and Coleman [8]. 

Other recent attempts to construct orthogonal coordinates have been based on 
solving first order partial differential equations of the Cauchy-Riemann type as an 
initial value problem. Starius [9] used this idea to construct an orthogonal coordinate 
mesh in a strip near a given boundary, but was forced to use a different grid in the 
interior of his domain with interpolation between the two grids then required in the 
region of overlap. Following an earlier approach by Potter and Tuttle [IO], Davies 
[ 1 I] used the same idea to construct a second set of coordinate lines orthogonal to a 
first set which was to be specified on an a priori basis, e.g., a set coincident with 
pathlines of the fluid in a semi-Lagrangian code. However, the application of this 
initial value approach is not generally suitable for the construction of a coordinate 
system for the complete domain, since it is usually necessary to specify conditions on 
all boundaries, and the generating equation should thus be elliptic. 

We suggest a “covariant” approach for the generation of orthogonal mappings. 
Simple considerations from vector and tensor analysis are used in Section 2 to 
establish the covariant Laplace equation as the generating elliptic equation for the 
transformation functions x(<, v) and JJ(~, v). The properties of the resulting coordinate 
system are then determined by constraints on the components of its metric tensor. We 
consider three types of application. In the first, the boundary shape is to be deter- 
mined as part of the solution of the problem, and we develop the so-called “strong 
constraint method” to determine the mapping. This case is discussed in Section 4. In 
the second type of application, the shape of the domain is known, and in the third, 
the spacing of boundary nodes is also specified, i.e., the complete boundary 
correspondence is prescribed. For these cases, we have developed the “weak 
constraint method,” which is discussed in Section 5. Finally, a brief comparison with 
the classical method of conformal mapping is given in Section 6. A preliminary 
presentation of our technique of orthogonal mapping was given in [ 121, and an 
application of the “strong constraint method” to calculate the shapes of gas bubbles 
rising through a viscous fluid is summarized in [ 131. 

2. EQUATIONS DEFINING THE MAPPING 

A most important first step in the development of a mapping between a Cartesian 
and a “boundary-fitted” curvilinear coordinate system is to determine the equations 
to be satisfied by the transform functions x(<, q) and v(r, r). Fortunately, this is 
extremely simple even if the resulting “boundary-fitted” coordinates are required to 
have predetermined properties such as orthogonality, provided the well-known 
covariant point of view is adopted, according to which any physical or geometrical 
law must be expressible in a form that does not depend on the choice of a particular 
coordinate system (see, e.g., [ 14, Sect. 12.51). 

In particular, a covariant, coordinate-free form of the equations for x and y follows 
directly from the trivial observation that x, as a Cartesian coordinate in the physical 
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space, is obviously a linear scalar function of position and the same is true of y. 
Thus, grad(x) and grad(y) are constant valued vector fields, and it follows that 

div grad(x) = 0, div grad(y) = 0 (2) 

everywhere, with div grad being the covariant Laplace operator V2. As is well known, 
this operator can be written in explicit form for any particular coordinate system r’, 
t21 including the one we want to construct, provided only that we know the 
components of the metric tensor g,, which define the length of a line element 
according to the relation 

ds2 = g,, dP d?. 

Here, the Greek indices equal one or two in 2-D and summation on the repeated 
indices is implied. 

The obvious question, then, is how the metric tensor is to be determined before the 
coordinate system is constructed. The answer is that the development of an 
appropriate coordinate transformation must begin by specifying the metric tensor- 
and it is this specification which determines the properties of the resulting coordinate 
system. For example, if the nondiagonal components of g,, are zero, the coordinate 
system <‘, r2 is orthogonal. If, in addition, the diagonal components are all equal to 
one, the system is Cartesian, etc. Now, whatever physical problem is being 
considered, there are always m degrees offreedom (where m = 2 in 2-D and m = 3 in 
3-D) in choosing the mapping functions (e.g., the functions x(<, r), ~(6, q) in 2-D). 
The essential idea pursued in the remainder of this paper is to “use” these available 
degrees of freedom to impose m constraints on the components of the metric tensor in 
order to build the desired properties into the constructed coordinate system. 

Although the metric tensor (being symmetric) generally has three independent 
components in 2-D (and six in 3-D), the m constraints referred to above are the 
maximum number that can be imposed if the space described by the resulting coor- 
dinate system is to be Euclidean (“flat”). Mathematically, the condition that the 
space is Euclidean is equivalent to requiring the Riemann curvature tensor of the 
coordinate system to be zero (see [ 141). The Riemann tensor, which is a function of 
the metric tensor and its first and second derivatives, has only one independent 
component in 2-D (which is proportional to the Gaussian curvature), and the 
restriction to a Euclidean space thus imposes a single constraint on gas, reducing the 
number of freely specifiable constraints to two. In 3-D, the Riemann tensor has six 
independent components, but they are linked by the differential Bianchi identities (see 
[ 14]), leaving only three “flatness” constraints on the metric tensor. Consequently, 
the number of freely specifiable constraints on g,, in 3-D is three. Note that an 
explicit consideration of the “flatness” constraints is not necessary. If a solution of 
Eqs. (2) exists (thus defining a transformation from {, q to the Cartesian coordinates 
x, y), the space described by c, q is guaranteed to be Euclidean because Cartesian 
coordinates may be introduced only in a Euclidean space. In other words, the 
condition that the Riemann tensor be zero is just a condition of integrability for Eqs. 
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(2) (see [ 15, Sect. 391) and so will be satisfied automatically when a solution of (2) is 
obtained. 

It is, of course, not clear that the degrees of freedom in choosing the mapping 
functions x(& v), y(<, q) can always be utilized as constraints on the metric tensor. In 
particular, it is not evident that mapping functions can always be found connecting 
some particular domains in the x, y and <, q planes which satisfy prescribed 
constraints on the metric tensor. To prove that this is indeed possible for arbitrary 
constraints would amount to a major result in theoretical mathematics, and is beyond 
the scope of the present work. However, for the particular pair of constraints in 2-D, 

g,, = 0 and gn/g11= 1 

which define conformal mapping, the proof is, in fact, well known: it is the celebrated 
Riemann mapping theorem. This fact provides some theoretical support for the 
present approach, though we do not restrict ourselves to conformal maps. 

The most obvious (and useful) constraint in the general case is to set all of the 
nondiagonal components of g,, equal to zero, thereby ensuring that the resulting 
coordinate system is orthogonal. Since the number of independent nondiagonal 
components is one in 2-D and three in 3-D, it is evident that this is always possible in 
two- or three-dimensional systems. In fact, in the important 2-D case, one additional 
degree of freedom is still left. For m > 3, on the other hand, the orthogonality 
constraint cannot be satisfied-an arbitrary space of more than three dimensions 
does not generally admit an orthogonal coordinate system (see Eisenhart [ 161). We 
restrict our attention to orthogonal systems in two dimensions in the remainder of 
this paper. I 

The metric tensor for 2-D orthogonal coordinates <, q can be written as 

where index 1 corresponds to C, and index 2 to q. Recall now that there is one degree 
of freedom left in 2-D after setting g i2 = 0, and we propose using this to impose an 
additional constraint on the scale factors h, and h,. A simple and useful constraint is 
to specify the ratio of the scale factors as a function of r and q, i.e.,f(<, 71) G h,/h, . 
The ratio h,/h, has a clear geometrical significance-it specifies the ratio of the sides 
of a small rectangle in the x, y plane which is an image of a small square in the <, q 
plane. It is therefore natural to callf(<, q) the distortion function. By judicious choice 
of the distortion function, one can control the spacing of a computational grid in the 
x, y plane, which is the image of a uniform grid in the [, v plane (say, on a unit 

’ Note that this case can also serve as a basis for three-dimensional orthogonal coordinates in the 
presence of either translational symmetry in the direction normal to the X, y plane (i.e., no dependence 
on z) or axial symmetry. For these special cases, the three-dimensional orthogonal coordinates are 
obtained, respectively, by either translating the c, 9 system in the z direction or rotating it about the axis 
of symmetry provided that the latter is also a coordinate line in 4, r~. 
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square). This should be particularly useful in problems involving disparate length 
scales in different directions (e.g., a boundary layer-like structure). Although the 
distortion function could, in principle, be adjusted automatically during the course of 
numerical solution to reflect the evolving gradients of the solution, such an algorithm 
would be expensive and has not been implemented in the current study. 

The conditionf(<, q) = 1, which corresponds to conformal mapping, is obviously a 
major restriction on the class of possible mappings; an adjustable function of two 
variablesf(& r,~) evidently provides much greater flexibility while orthogonality is still 
maintained. Indeed, the “stiffness” of the conformal mapping, which makes it ill- 
suited for the present purposes (see Section l), is due to this unnecessary restriction 
f(& II) = 1. To a lesser degree, the same is true for other methods in which f(<, q) = 
const(Hung and Brown [5], Pope [6]). We note in passing that in 3-D no freedom is 
left after specification of the three orthogonality constraints g,, = g,, = g,, = 0, and 
so orthogonal mapping in 3-D is likely to be as “stiff’ as conformal mapping in 2-D. 

Equations (2) can now be written explicitly in the C, q coordinates using the con- 
ditions 

h -.!L= 
4 - 

and the well-known formula for 
orthogonal coordinates, which is 

g12 = 0 

h 
2 = (g==Y2 =f(( a) 

h, - k,Y2 ’ 

the two-dimensional covariant Laplace operator in 

The generating equations are thus2 

$(f~)+-&(-+~)=o, $(.f$)+;(fg)=o. (3) 

* One of the referees has pointed out that Eqs. (3) can be obtained from the Thompson er al. Eqs. (1) 
with an appropriate choice for P and Q, thus suggesting that the present mapping techniques (and all 
related techniques intended to generate orthogonal mappings) should be considered as special cases of 
the Thompson et al. technique. While the first part of this statement is, of course, true, the specific 
choice 

p=Laf h,h, at' Q=i&# 
which is necessary to obtain (3), was not, apparently, evident to Thompson and co-workers, who 
suggested that P and Q be chosen as sums of decaying exponentials and stated “An orthogonal system 
cannot be achieved with arbitrary spacing of the coordinate lines around the boundary,” nor to subse- 
quent workers (cf. Haussling and Coleman 181) who actually attempted to generate the P and Q so as to 
ensure an orthogonal mesh. At any rate, this choice is not directly realizable since h, and h, cannot be 
specified in advance. 
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The solution of these equations with appropriate boundary conditions (to be 
discussed later) will provide the transformation from Cartesian coordinates X, y to an 
orthogonal curvilinear coordinate system <, u provided the mapping actually exists 
for the particular boundary shape3. The scale factors h, and h, that are required in 
the governing equations of the physical problem, can be computed easily from the 
standard formulae of tensor analysis 

(4) 

Of course, only one of the scale factors needs to be computed from (4) as the second 
one can be obtained from h,/h, =f (c, q). 

Three types of application should be distinguished. 

(1) The shape of the domain is not known in advance, but is to be determined 
as a part of the solution of a physical problem (e.g., free boundary problems in fluid 
mechanics). 

(2) The shape of the domain is known, but the distribution of the coordinate 
nodes along the boundary is not specified and may be determined by the mapping. 

(3) The shape of the domain is known and the distribution of coordinate nodes 
is specified along all boundaries, i.e., the complete boundary correspondence is 
prescribed. 

The two methods, considered in the rest of the paper (the “strong constraint” method 
(Section 4) and “weak constraint” method (Section 5)) are not equally suitable for 
these problems. The strong constraint method (which includes conformal mapping as 
a special case) works well for problems of type (l), and might, in principle, also be 
applied to problems of type (2). The strong constraint method cannot be used to 
solve problems of type (3). The weak constraint method, on the other hand, is 
particularly well suited to problems of type (3), and thus also can be used 
conveniently for (2) by simply prescribing some reasonable boundary correspond- 
ence. 

Since problems of types (2) and (3) are more common than those of type (l), the 
weak constraint method is likely to be the more important of the two methods of 
mapping. 

3 It may be noted that the present orthogonal mapping corresponds to a special case of a so-called 
quasiconformal mapping [ 17, 181 when J and f-’ are bounded [the “complex dilatation” p of the 
quasiconformal mapping being real and equal to (1 -f)/( 1 +f) in this case]. An extensive 
mathematical theory of quasiconformal mapping has been developed, including the mapping theorem 
[ 17, 181 which establishes the existence of a quasiconformal mapping for a given p (and thus of an 
orthogonal mapping for a given f if f and f-’ are bounded). It would obviously be of considerable 
interest to establish theoretically the existence of an orthogonal mapping for any givenf, since some of 
the most useful orthogonal mappings do not satisfy the above boundedness conditions (e.g., the mapping 
which gives polar coordinates hasf= R& so thatJ= 0 at C = 0, see Section 4a). In this paper we take the 
existence of an orthogonal mapping for granted and proceed to the practical task of generating the 
mapping numerically. 
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3. APPLICATION TO AN INFINITE DOMAIN 

In order to actually apply Eqs. (3) to the calculation of a boundary-fitted coor- 
dinate system, it is necessary to specify the distortion function f and determine 
boundary conditions for the functions x(& q) and JJ(<, r,r). As a preliminary, however, 
we consider here the application to an infinite domain. Since the present investigation 
was originally motivated by the fluid mechanics problem of flow past a deformable 
bubble (or drop), we shall use this problem for illustration purposes in this and subse- 
quent sections. In the case of a bubble, the interior flow can be ignored and it is 
therefore only necessary to develop boundary-fitted coordinates for the region exterior 
to the bubble. The objective, for a given bubble shape, is an orthogonal mapping 
X(r, q), Y(& s) which maps the unit square 0 < << 1 and 0 < rl< 1 onto the exterior 
of the bubble. A “reasonable” correspondence of the boundaries for this case is 
sketched in Fig. la, with 4 = 1 being the bubble surface, < = 0 corresponding to 
“infinity” and q varying from 0 to 1 as the bubble surface is traversed from the 
trailing to leading axis of symmetry. Note that the 4, ?r coordinate system, as 
sketched, will yield (after rotation about the x axis) a left-handed three-dimensional 
coordinate system <, 17, p if the sense of rotation is such that the cylindrical coor- 
dinates X, Y, p (where Y > 0) are right handed, but this presents no real problems 
and will actually be very useful in the case of a viscous drop where the matching of 
an exterior and interior coordinate system is most convenient when one is right 
handed and the other left handed. One should only remember that in a left-handed 
coordinate system all the expressions which involve the Levi-Civita alternating 
symbol cijk (e.g., cross product and curl) change sign. 

The first problem, and one whose resolution is of some general interest, is the 
mapping of an infinite domain by numerical solution of Eqs. (3) subject to some 
suitable boundary conditions. Since numerical solution cannot produce functions 
X(<, 9) and Y(<, 17) which reach infinite values, it is necessary to introduce some 
modification into the problem. One obvious possibility would be to simply truncate 
the X, Y domain at a large, but finite distance. However, a more satisfactory 
resolution is to combine a numerically generated orthogonal mapping from r, q to a 
(“fictitious”) auxiliary domain in which x(& s) and y(r, q) are finite, followed by a 
conformal mapping from this finite auxiliary domain to the infinite, “physical” 
domain in the X, Y space. 

c=oata b 

FIG. I. Sketch of the coordinate system for the exterior of an axisymmetric bubble. (a) The final 
coordinate system in the infinite domain, and (b) the auxiliary mapping for the finite domain. 
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From the properties of conformal mapping it follows immediately that the r, r] 
coordinates in the physical X, Y space will be orthogonal; moreover, the scale factors 
H,, H, for these coordinates will be related to the scale factors h,, h, of the auxiliary 
mapping via simple formulae 

H, = IF’ 1 h,, H,=lF’)h, 

where F is the analytic function which defines the conformal mapping, i.e., X + iY = 
F(x + iy). 

One especially simple and convenient conformal mapping (of the so-called second 
kind since it reverses orientation) which transforms from a finite to infinite domain is 
the inversion 

F(w) = 4, 1 
X+iY=- 

x - iy 

which leads to 

X=4, 
r 

r,;, 
r 

Hl=+, 
I 

H,=+, 
r (6) 

where 

rz=x2+y2. 

A qualitative sketch of the auxiliary mapping x(& r,r), y(<, q), which, when 
combined with (5) and (6), will yield an orthogonal, boundary-fitted coordinate 
system outside a bubble (or any particle), is seen in Fig. lb. The point x = y = 0 
corresponds to infinity in the X, Y plane and is an image of the line C = 0, i.e., the 
mapping is singular here. The distortion function f(& q) should thus be equal to 0 at 
< = 0 (a concentration point of the coordinate system). Other factors concerning the 
choice off(& q) will be discussed later. 

4. MAPPING BY THE STRONG CONSTRAINT METHOD 

a. Choice of the Distortion Function and Boundary Conditions 

Let us now turn to the application of orthogonal mapping, beginning with the 
simplest case from a conceptual point of view, in which the distortion functionf(& 9) 
is specified completely throughout the {, rl domain. In anticipation of the alternative 
approach outlined in Section 5, the method of mapping associated with this condition 
will be called the “strong constraint method.” It is especially convenient when the 
shape of the domain must be determined as a part of the solution of the problem (e.g., 
the shape of a bubble in flow at finite Reynolds number), but cannot be used when 
the boundary correspondence is completely specified, where the “weak constraint” 
method of Section 5 must be adopted. 
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FIG. 2. Control over the density of coordinate lines by distortion function. Here, f(<, 9) = 
n5( 1 - 0.9 cos nq), h,(l, I) = 1. 

The most appropriate form for the distortion function depends on the domain of 
interest and any special features of the physical problem which must be resolved. 
Consider, for example, a bubble in a uniform fluid flow. The auxiliary domain has 
already been sketched in Fig. lb, and we have noted that f(0, q) should be 0. If one 
does not need the distortion to vary along the boundary c = 1, one can simply choose 
f(<, q) to be the same as for polar coordinates, i.e., f = rre. Such a choice would, of 
course, produce polar coordinates if the shape of the boundary r = 1 were a 
semicircle with its center at x =y = 0, though very different coordinates will be 
produced when the shape of the boundary is noncircular. One potential advantage of 
equating f(& q) with the distortion function for some classical, “separable” coor- 
dinate system (such as polar coordinates) is that it may be possible to construct 
analytical expressions for the mapping functions, x(<, 11) and y(& II) (see Section 4~). 
On the other hand, if one wants the computational grid to be denser in the region 
downstream of the bubble (say, to resolve the wake), this can be accomplished easily 
by introducing the desired q dependence into the distortion function (see Fig. 2). 
Similarly, a higher resolution can be achieved in the boundary region by introducing 
a more complicated dependence on 4 into f(<, q). Note that the finite-difference 
equations of the problem of interest will always be solved on a uniform grid in the 
unit square, 0 Q c, q Q 1; it is well known that the uniform grid is preferable for the 
production of finite-difference schemes of high accuracy. 

Let us now consider the boundary conditions for numerical generation of the 
mapping x(r, ?,r), J$& q). Referring to Fig. lb, it is easy to see that 
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At < = 0, which is a concentration point for the coordinate system and a singular 
point for differential equations (3), the only necessary condition is that x and y be 
finite (see Morse and Feshbach [ 19, pp. 713-7 16]), which reflects the fact that no 
real physical boundary is present. This condition will, of course, be satisfied by any 
numerical solution of (3), and it is permissible to choose arbitrary values (within 
some reasonable range of O(1)) f or x and y at r = 0, with the particular choice 
influencing the solutions for x(& q) and y(c, q) by no more than the order of accuracy 
of the numerical scheme. Here, we simply choose 

Xl[=O = 0, Ylr=o = 0. (8) 

Finally we turn to conditions at the boundary 4 = 1, which corresponds to the 
bubble surface in the example considered here. In general, both x( 1, q) and y( 1, ~1) 
cannot be specified simultaneously if the resulting coordinate system is to be 
orthogonal. To demonstrate this fact, we need only examine the orthogonality 
constraint g,, = 0. With the definition of scale factors (4), and the distortion function, 
this yields 

(9) 

These are obviously the analogue of the Cauchy-Riemann conditions in conformal 
mapping.4 Clearly, if x((,i is given as a function of q, conditions (9) determine 
$/8&,, , and vice versa. Thus if both x(1, tjt) and ~(1, q) are given, conditions (9) 
provide also ax/arl,,i and @/8{l,=,, and the problem is overdetermined. Note, 
however, that a combination of a constant Dirichlet condition for one function and a 
zero Neumann condition for the other will satisfy (9) automatically (conditions (7) 
are of this type). If it is essential that both x( 1, q) and y( 1, q) be specified (i.e., the 
exact boundary correspondence of the mapping be prescribed), it is evident that the 
method of coordinate transformation must be substantially changed. This question is 
considered in Section 5. 

We have noted earlier that the strong constraint method is particularly useful for 
problems in which the boundary shape must be determined as part of the solution. 
For the example of a deformed bubble, considered here, the shape of the boundary, 
x( 1, q), y( 1, q) must be attained as part of the problem solution. One approach is to 
use an iterative procedure starting from an initial shape (e.g., spherical). At each 
iteration, the position of the curve c= 1 which represents the bubble boundary (in 
either x, y or X, Y) must be changed incrementally in the normal direction, with the 
magnitude and sign of the increment (i.e., whether the boundary moves locally “in” 
or “out”) to be determined by the magnitude and sign of the local normal-stress 
imbalance across the interface. 

What is needed for applicaton of the strong constraint method to problems 
involving an unknown boundary shape is a method for changing the mapping x(<, q), 

’ Note that the signs in (9) are for a mapping which preserves orientation, otherwise the signs are 
reversed. 
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.Y(& r) so that the position of the curve r = 1 is changed in the desired direction by a 
small increment normal to itself. This must be done without directly specifying both 
x( 1, ‘I) and y( 1, q) as would seem to be necessary if one were to attempt somehow to 
specify the new position of a boundary point (say, ~“(1, r), ~“(1, q)) directly from its 
position in the previous iteration [x”-‘(1, q), yn-‘(1, v)]. The approach proposed 
here is to alter the mapping, in a prescribed fashion, by changing its metric tensor 
(i.e., the scale factors). In particular, it is evident from the geometrical significance of 
h,(<, 9) that a point of the boundary, say r = 1, q = Q,, can be moved outward or 
inward along a <-coordinate line (17 = qO) which is locally normal to the boundary 
(due to the orthogonality of the coordinate lines) by simply increasing or decreasing 
h,(<, Q,). There is, of course, no way to modify h, all along the line q = ‘lo in an a 
priori fashion and still obtain a mapping which satisfies Eqs. (3). If a point on the 
boundary is moved, the mapping functions and the scale factors are then completely 
determined inside the domain by these equations. The approach which we adopt is 
thus to derive boundary conditions for the functions x and y at <= 1 which are 
equivalent to changing h, locally in the limit as r--+ 1. In order that this change in 
h,(l, Q,) actually cause the boundary l= 1 to move inward or outward in the x, y 
plane, it is necessary that it propagate inside the domain to produce changes of the 
same sign for h,(<, a,) for r < 1. We can offer no rigorous proof at this time that this 
will always be true. For now, we simply accept it as a hypothesis. It should be noted, 
however, that this hypothesis is supported in the special case f = 1 of conformal 
mapping by the so-called Lindeliif principle [20] and has also turned out to be true 
for all test cases that we have considered to date. 

The iterative procedure which we have adopted in the case of determining the 
unknown boundary shape for a bubble may be represented as follows. The value of 
h,(l, vt,) at the nth iteration is calculated as its value at the previous iteration plus a 
small change P’(vO), dependent on (in the simplest case, proportional to) the 
normal stress imbalance at q0 for the (n - 1)th iteration, i.e., 

h;(L ~0) = h;-‘(1, vo) + ~“-l(rlo) (10) 

for 0 < TV,, < 1. The new value of h,(l, qO) is then transformed into boundary values 
for c?x/c?<]~,~ and ,3ylar],,r by means of the definition 

(h;)* = ($)* + ($)* (11) 

and the constraint of orthogonality g,, = 0. The latter is implemented by noting that 
g,, = 0 can be expressed in the form 

(12) 

The term on the left-hand side is the slope of a <-coordinate line at the boundary, 
while that on the right is the negative inverse of the slope of the boundary (r = 1) 
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itself. Thus, in order that the iterative procedure converge to a mapping in which the 
<-coordinate line at the boundary (< = 1) is orthogonal to the boundary, we interpret 
(and use) Eq. (12) as defining the slope of the <-coordinate line at the nth iteration 
via the slope of the boundary < = 1 at the previous iteration, i.e., 

PY “PO (ax”- ‘/av> 
(ax”/ay) I=, = - (@J”-‘lav) (=I’ 

Equations (IO), (1 l), and (13) provide sufficient information to determine boundary 
conditions for 

a2 w 
at 6=, 

and - 
at I=1 

at each new iteration. Equation (13) can be applied either in the given form or 
inverted, the choice being made in such a manner as to avoid division by very small 
numbers. The signs of ax”/a&,, and ay”/a<],,, (which are found by a square root 
operation from (11)) are determined from the signs of ayn-‘/aq]r=l and ax’-‘/atl]r= i 
via (9). 

The procedure outlined above can be implemented easily on a computer and leads 
to a stable and fast iterative process. It may be noted, however, that the boundary 
conditions for x(& q) are all of the Neumann type, with the exception of the “weak” 
condition at < = 0 and the solution is therefore determined only up to an arbitrary 
constant. Numerically, this “indeterminacy” manifests itself in the fact that the coor- 
dinate boundary (and, in fact, the whole coordinate system) may “creep” along the x 
axis during the iterative process (the point 6 = 0 stays at x = 0 but, being a singular 
point, it cannot “hold” the rest of the solution, see the discussion above). A simple 
way to eliminate this unwanted movement is to add a constant to x(& r) after each 
iteration, with the value chosen in such a way that the points closest to < = 0 on the x 
axis (i.e., x(/z, 0) and x(/r, l), where h is the grid size) are required to fit 
symmetrically about the point x = 0. 

b. Numerical Examples of the Strong Constraint Method 

The proposed strong constraint method for generation of boundary-fitted, 
orthogonal coordinates has now been reduced to the solution of Eqs. (3), subject to 
the boundary conditions described above. A variety of finite-difference schemes can 
be used for this purpose. In our own computations we have adopted the AD1 
technique of Peaceman and Rachford (see, e.g., Richtmyer and Morton [21]) and 
used a 41 x 41 grid, i.e., h = 0.025. 

First, we test the adequacy of Eqs. (11) and (13) for the generation of boundary 
conditions for (ax/a<),= 1 and @y/X&= 1 with h,(l, q) known. We consider two cases. 
In the first, we set 

h&l, v) = 1 
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f(<, q) = 7?<( 1 - 0.9 cos K?jJ) 

while the second has 

h&l, fj) = sin* 7rq for 0<?1<0.5, 

= 1 for OS<rt< 1, 

and 

In both cases, an iterative process is necessary even with h&l, v) specified. For the 
calculations reported here, we start with an initial guess for x, y, use this to calculate 
(ax/@) and (@/aq) at the boundary (< = l), use the specified form for h, and Eqs. 
(11) and (13) to obtain boundary values for 8x/a&,i and $Y/&=, , and finally 
calculate a new estimate for the mapping by numerically solving Eqs. (3) with 
WW,, 1 and WXI,, 1 as boundary conditions. With this new estimate for x(<, q) 
and y(& f,r) the process can be repeated. Presumably, if Eqs. (11) and (13) did not 
provide a sufficient means of obtaining boundary conditions for x(& ?,r) and y(& q) 
(and this is by no means obvious), we might expect this iterative procedure to 
diverge. However, in both of the cases listed above, a convergent solution was 
obtained. In the first example, a very good initial guess can be generated analytically 
and the test of conditions (11) and (13) is rather weak. However, the resulting coor- 
dinate mapping, which is shown in Fig. 2, is of some qualitative interest in itself 
since it demonstrates how the density of a computational grid can be controlled by 
f(& q); this particular grid might potentially be useful for computation of the flow 
past a body with a developed wake. The “teardrop” shape shown in Fig. 3 was 
obtained for the second case and constitutes a much stronger test of convergence with 

FIG. 3. “Teardrop” shape obtained with f(& q)= nt and h,(l, q) = sin2 nq, if q < 0.5, or 1, if 
t] > 0.5. 
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boundary conditions generated from Eqs. (11) and (13). In this case, approximately 
60 iterations (with a constant time step O(h)) were necessary to compute the 
mapping, starting with polar coordinates (and a circular boundary) as an initial guess 
(sixty iterations correspond to approximately 30 set of CPU time on the VAX- 
1 l/780 computer which we used for our work). It should be noted that h&l, q) = 1 
for all tf in this initial guess and the change from this to the specified form for h,( 1, q) 
is a very strong “jump,” much greater than one might expect at each step in an 
overall solution scheme for a problem with unknown boundary shape where h, is 
incremented according to Eq. (10). The maximum nonorthogonality error in the final 
solution is approximately 0.5 %, i.e., max ( g,, ) N 0.005. 

Let us now turn to an example of a problem in which an unknown boundary shape 
is to be calculated as part of the solution. This will constitute a final numerical test of 
the strong constraint method. Figure 4 gives a final converged solution for the 
axisymmetric steady shape of a bubble at finite Reynolds number, for a uniform 
streaming flow which moves from left to right. Of course, the shape is initially 
unknown and can be determined only in the course of solving the full fluid dynamical 
problem, described by the Navier-Stokes equations and appropriate boundary 
conditions. This is precisely the type of problem that the strong constraint method 
was designed to handle, but it is very important to establish the convergence of the 
overall solution scheme outlined in Section 4a, including iterative incremental 
changes in h&l, II) as indicated in Eq. (10). In the present example, only an approx- 
imate solution of the fluid dynamics problem was obtained on the grid provided by 
the mapping at each overall iteration. This decreases the necessary computing time to 
the final steady state, but renders meaningless the transient results for bubble shape 
and velocity field at intermediate iterations in the solution scheme. The mapping and 
bubble shape illustrated in Fig. 4 were obtained starting from a sphere as the initial 
guess for bubble shape. After obtaining the solution of the fluid dynamics problem for 
a given boundary shape at each iteration in the overall solution scheme, the scale 

FIG. 4. Deformed bubble; obtained as a part of solution of the fluid mechanical problem described 
by the Navier-Stokes equations; f(& q) = x<. 
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factor h&l, q) was changed according to the sign and magnitude of the normal stress 
imbalance at the surface of the bubble, as discussed in Section 4a. The new scale 
factor was then used to redefine the mapping and the corresponding boundary shape 
for the bubble, and the whole process was repeated for this new shape, until overall 
convergence was achieved. A detailed account of this fluid mechanical problem will 
appear in a forthcoming publication. A brief description of the solution procedure 
and results was presented in [ 131. 

c. On the Possibility of Analytical Solution by Separation of Variables 

The present approach to the construction of an orthogonal mapping via the strong 
constraint method is primarily a numerical one. Nevertheless, it is of interest to note 
that the possibility exists for analytical solution in cases where the distortion function 
f(<, q) of the mapping happens to coincide with the distortion function of some 
classical separable coordinate system. For example, in the previous section, the 
distortion function J(<, q) = n< is just that for polar coordinates and an analytical 
solution could have been attempted. The reason for this is that the covariant Laplace 
Equation (3), which defines the orthogonal mapping, has exactly the same form for 
the general orthogonal coordinates & r as it does in the classical polar coordinate 
system with the samef(<, q)-simply because the form of the equation depends only 
onf(& q). The domain in the <, q plane is a unit square and one can solve Eqs. (3) in 
principle, as a series expansion in the appropriate eigenfunctions of the Laplace 
equation. 

As an example, let us consider the distortion function f(<, ~7) = rc< for which the 
general solution of the Laplace equation, that is finite at r = 0, is (Morse and 
Feshbach [ 19, pp. 7 13-7 14]), 

5 [A, cos(hrv) + B, sin(krq)] r’. 
I=0 

Applying the conditions at r = 0, q = 0, and v = 1 that were discussed in Section 4a, 
one thus obtains 

x = -? A, cos(lnq) <‘, 
15 

y = f B, sin(mlrr7) <” 
m=l 

and the conditions for orthogonality (9) require 

A,=B, for I=m. 

The mapping is thus 

x = f A, cos(hcq) c’, 
/=I 

y = ,zl A, sin(laq) c’ 
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and the coefficients are to be determined from the boundary conditions at { = 1, 
where 

5 ‘%cosv~v)=4,4, 5 A,sin@rj)=y(,=,. 
I= 1 /=I 

(14) 

One can distinguish several possible cases insofar as determination of A, is 
concerned. First, in the unlikely circumstance that one of the Cartesian coordinates, 
i.e., x or y, is known at the boundary r = 1 as a function of the transform variable q, 
the coefficients can be obtained directly from (14) using the orthogonality of cos(b~) 
and/or sin(bg). Second, in a more realistic situation, the shape of the boundary < = 1 
is given parametrically, e.g., 

Xl[=, = 4s), 

where s is an arclength, i.e., 

($)‘+ (I)‘- 1. 

Since the correspondence between s and q is not ordinarily known, the coefficients A, 
in this case cannot be found directly in closed form, but some version of a method of 
successive approximations can be used. 

Finally, there may be cases like that discussed in Section 4a in which the boundary 
shape is not known in advance but must be determined as part of the solution. In this 
case, an iterative procedure like that adopted in Section 4a is appropriate. 

Whatever method (numerical or analytical) is used to construct the mapping, the 
equations of the problem of interest, which are to be solved on the mapped domain, 
may still be solvable by separation of variables, providedf(<, q) is of some classical 
form. This curious possibility of using classical analytical methods of solution, 
devised for some very special coordinate systems, in the case of a much more general 
orthogonal mapping is due to the fact that the form of the governing equations 
depends mainly (for the Laplace equation entirely) on the distortion function. 

These analytical approaches are worth exploring in more detail than is done here. 
On the other hand, as Section 5 will show, in many cases it may be advantageous to 
use a distortion function which is not limited by the requirement of being of some 
classical form. 

5. ORTHOGONAL MAPPING WITH A PRESCRIBED BOUNDARY CORRESPONDENCE 
(the Weak Constraint Method) 

The strong constraint method, considered so far, could also be used, at least in 
principle, for problems of type (2) when the shape of the domain (but not the 
complete boundary correspondence) is prescribed from the beginning. In this case, 
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one might start from some initial approximation to the desired boundary shape and 
proceed iteratively by using the distance between the desired boundary and the 
numerical approximation to that boundary (measured along the direction normal to 
the current boundary) as a driving “normal force” for moving the boundary in or out. 
In practice, however, a much more powerful technique can be devised for dealing 
both with this problem, and the apparently more difficult one in which the complete 
boundary correspondence (i.e., the boundary shape and the spacing of coordinate 
nodes along the boundary) is specified. This is the topic of the present section. 

Let us then consider the generation of an orthogonal mapping with a prescribed 
boundary correspondence. It has often been suggested that such a mapping is 
impossible (see, for example, Thompson et al. [ 1, p. 3001). Indeed, in the case of 
conformal mapping it is not possible to achieve a prescribed boundary correspond- 
ence, and this is crucial in limiting the application of conformal mapping to problems 
of practical importance. 

It would be very beneficial in a number of applications to be able to construct an 
orthogonal mapping with a prescribed distribution of grid points along a boundary of 
given shape. Indeed, in the case of a boundary separating two domains of solution 
(e.g., the surface of a liquid drop), this ability is imperative in order that the normal 
coordinate lines on the two sides emanate from the same boundary points (otherwise, 
application of matching conditions is greatly complicated). 

It may seem, at first, that the present approach could not be any more successful 
than conformal mapping as far as the determination of a mapping with prescribed 
boundary correspondence is concerned. Indeed, a complete prescription of boundary 
shape and mesh spacing along a boundary requires the imposition of Dirichlet 
boundary conditions for both functions x(& q) and y({, q) on the boundaries of the 
r, 11 domain-and this is clearly impossible with f(<, q) specified (as discussed in 
Section 4a). However, we will see that the present approach does allow orthogonal 
mappings with prescribed boundary correspondence, provided one imposes what we 
shall call a “weak constraint” on f(C;, q), rather than specifying f(<, II) completely 
throughout the whole r, q domain. 

We have noted in Section 2 that two degrees of freedom exist in defining a 
mapping in two dimensions. In the method of the preceding section, these were used 
to impose the orthogonality condition g,, = 0, and to specify the distortion function, 
f(<, ‘1) = h,/h,, throughout the domain of < and q. It will be convenient to refer to 
contraints specified throughout r and q as utilizing a “domain degree of freedom,” 
and call these “strong constraints.” Evidently, in this terminology, a mapping in two 
dimensions allows imposition of two (and only two) strong constraints, and the 
imposition of an added “boundary constraint,” in the form of a prescribed boundary 
correspondence, will cause the mapping to be over-determined unless one of the 
domain constraints, for g,z or f, is relaxed. The basic idea proposed here is to 
maintain orthogonality, i.e., g,, = 0, while giving up a part of the freedom to specify 

f (c, q) everywhere in return for the ability to specify both x(& v) and y(& Q) on the 
boundary of the c, q domain. In other words, we propose to relinquish a “part” of the 
“domain degree of freedom,” available to specify f; in order to gain a “boundary 
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degree of freedom” for x(<, q) (or y(<, a)) while still retaining the orthogonality 
condition g,, = 0. Instead of prescribing the function f(& q) explicitly throughout the 
domain, we give a rule which determines f in the interior of the <, q domain as soon 
as it is known on the boundary. The boundary values off are found using the 
definition of f(+,/h,), and formulas (4) to obtain h, and h, from the mapping 
functions x(& a) and y(& II). The latter are obtained, in principle, by solving Eqs. (3) 
subject (for prescribed boundary correspondence) to Dirichlet conditions on the 
boundaries of the <, q domain. It is evident, since the governing Equations (3) for x 
and y involve f, that the boundary values for f (which are used to determine f in the 
interior) and the mapping functions x(<, q) and y(<, n) must be determined sequen- 
tially in a successive approximation scheme, starting from some initial guess for J 
The exact manner in which this scheme is implemented will be discussed shortly. As 
a preliminary, however, it is useful to consider some additional factors that are 
intended to clarify the fundamental ideas behind the approach proposed here to 
obtain orthogonal mappings with a prescribed boundary correspondence. 

First, the rule to determine f from its boundary values is essentially arbitrary, 
subject to the condition that f > 0. It may thus take the form of an algebraic (“inter- 
polation”) formula, or, for example, an elliptic differential equation which can be 
solved to determine f from its values on the boundary. For convenience, we denote 
this type of condition on f as a weak constraint to distinguish it from the strong 
constraint in which f is given explicitly throughout the domain. It is obvious that a 
weak constraint together with the values off on the boundary is exactly equivalent to 
some strong constraint, and we have seen that a strong constraint on f is enough, 
together with the condition g,, = 0, to determine an orthogonal mapping in two 
dimensions. The available domain degree of freedom may thus be used either to 
impose a strong constraint on f (as in the previous section), or to impose a weak 
constraint together with values off along the boundary. Heuristically, the second 
approach divides a domain degree of freedom into two “parts”: the “interior degree of 
freedom” (used by a weak constraint) and the “boundary degree of freedom.” 

The key idea of the present development is to use a weak distortion constraint 
instead of a strong one, and to leave the values off along the boundary unspecified, 
i.e., to let these values be determined by the mapping itself. The hope is that in this 
case one will be able to prescribe the boundary correspondence, since the boundary 
degree of freedom, available for the distortion constraint, is not used. 

Let us now discuss how the method is to be applied. As we have noted, the 
problem of determining x(& q) and y(<, q) is rather unusual in the sense that the coef- 
ficients of the governing partial differential Eqs. (3) depend via f (<, II) on the coupling 
between the solutions x(& q) and y(<, q). The problem is thus nonlinear and must be 
solved by some iterative procedure. Although this might seem a disadvantage in 
comparison with the strong constraint method of the previous section, this is not 
necessarily true since the latter also requires iteration (on boundary conditions) and it 
is not obvious which iteration will converge most rapidly. At any rate, this 
nonlinearity is a small price to pay for the ability to construct an orthogonal mapping 
with a prescribed boundary correspondence. 
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The iterative procedure mentioned above may be realized as follows: 

(1) Choose an initial guess for x(& q), y(& q), thus obtaining an initial guess 
for f(<, II) via its definition and expressions for scale factors (4). It is preferable, but 
probably not absolutely necessary, that the initial f(& q) satisfy the chosen weak 
constraint, i.e., the chosen rule for determining f from its boundary values. 

(2) Using this f(& q) and the Dirichlet boundary conditions for x(<, q), JJ(<, q) 
known from the prescribed boundary correspondence, calculate new x(<, q), y(& II) 
from the basic Eqs. (3); if some iterative scheme is used to solve (3), it will be 
sufficient to advance the solution by only a few (or even one) iterations. 

(3) Calculate new scale factors on the boundary from x(<, v), y(<, tf) using (4). 
(4) Use the weak contraint and the new boundary values for f (c, v), calculated 

from the scale factors of step (3), to find new f(& ‘1) in the interior of the domain. 
(5) Go to step (2) and repeat. 

This algorithm appears to work fairly well. It has been tried with two types of weak 
distortion constraints (rules)--algebraic “interpolation” and an elliptic partial 
differential equation (EPDE). The weak constraint may apparently be chosen quite 
arbitrarily, but it should give f(<, q) which is nonnegative and, preferably, smooth. 
Since the freedom to prescribe the boundary correspondence already gives a 
considerable degree of control over the spacing of coordinate lines near the bound- 
aries (which is usually the most important area), the weak constraint can often be 
chosen as a rule which determines the values off(& r,r) in the interior of a domain as 
some kind of simple interpolation between its boundary values. 

To obtain interpolation by EPDE, f(<, r) is defined as a solution of some EPDE 
with Dirichlet boundary conditions. The EPDE may, for example, be the ordinary 
Laplace equation (a2f/ac2) + (a’f/aq’) = 0, and the motivation for this approach is 
the fact that a linear interpolation in 1-D can be thought of as defined by the 
differential equation d2f/dt2 = 0. It is, of course, known that the solution of the 
ordinary Laplace equation provides a means of (local) averaging throughout the 
domain. 

Although this EPDE approach appears quite sophisticated, experience obtained in 
the course of the present study indicates that the simpler, algebraic, approach is often 
to be preferred, and this will now be described in more detail. 

To obtain a convenient formula for an algebraic interpolation, consider first the 
case when the given boundary values of f(<, Q) are zero in all four corners of the 
0 <r, q < 1 domain. Then the formula 

f”(&?j)=(l -<)f(O,q)+<f(l,rt)+(l --v)fGO)+~f(~~ l) 

gives a suitable, smooth interpolation. If the corner values are not zero, however, this 
formula is not suitable, since each corner value appears in it twice, giving a spurious 
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contribution. To obtain a useful interpolation formula in this case, we need to 
subtract a bilinear “corner function” 

f’(& q) = (1 - r)(l - V)f(O, 0) + (1 - 0 Vf(O, 1) + C(l - r)f(l, 0) + rV.01, 1). 

The final formula for an algebraic interpolation thus reads5 

This algebraic interpolation is very easy to apply both as a weak constraint for a 
distortion function f(& q) and as an intial guess for ~(4, q) and y(<, q) (if a better 
guess is not available). We note in passing that if orthogonality of the boundary-litted 
coordinates is not required (as in the method of Thompson et al. (see Section l)), a 
direct algebraic interpolation for x(& r), y(<, q) provides the simplest possible way to 
construct a complete coordinate system with prescribed boundary correspondence. 

It should be borne in mind that one has almost complete freedom in choosing the 
weak constraint rule, and the above suggestions are simply examples. In particular, 
some control over the spacing of the coordinate lines can obviously be achieved by 
the form chosen for the weak constraint, in addition to the strong control obtained by 
prescribing the boundary correspondence. The only limitation is that f(& II) must be 
greater than zero inside the domain. In some cases, this will follow automatically 
from the fact that f(<, v) > 0 at the boundaries (where it is calculated as a ratio of 
two positive quantities: the scale factors). In other cases, the condition f(r, ‘7) > 0 
inside the domain may be quite simply satisfied by adding some functon of < and q to 
(15), which vanishes at the boundaries; the same function can also be efficiently used 
for control of the coordinate mesh. Other possibilities are conceived easily, but the 
details of choosing the weak constraint rule are much better discussed in the context 
of a particular application and we will not deal with them further here. 

Let us finally consider numerical examples of the weak constraint method. These 
examples were obtained using an AD1 technique to solve Eqs. (3) and algebraic inter- 
polation (15) as an initial guess for x(& II), y(& q). The number of iterations needed 
was of the same order (50-100) as required by the strong constraint method of 
Section 4. The “peanut” shape, shown in Fig. 5, was obtained by simply specifying 
arbitrarily chosen values of x and y (i.e., prescribing the boundary correspondence) at 
r = 1, v = 0, and q = 1; plus the boundary conditions ~$0, q) = 0 and ax/a&= o = 0 
at the boundary c = 0 (which in this case corresponds to a segment of the x axis). 
This last pair satisfies orthogonality conditions (9) for .any f(0, ‘1) which means that 

’ We are indebted to one of the referees for pointing out the existence of an elaborate mathematical 
framework [22] for constructing expressions of this type. In mathematical terminology, Eq. (15) is a 
“bivariate interpolation by a Boolean sum of projection operators” P, @ P, = P, + P, - P,P,, where the 
projection operator P, has been defined in our case as P,f({, 71) = (1 - c)J(O, n) + tf(l, r,r), i.e., P, and 
P, realize linear interpolations in 1-D. Obviously, much more sophisticated interpolation formulae can 
be obtained by using more complicated forms for P, and P,. 
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FIG. 5. “Peanut” shape obtained by the weak constraint method (only every second of the I- 
coordinate lines are drawn). 

at this part of the boundary (only) the value of f(& v) needs to be given; it was 
chosen as S(O, q) = 4 sin* nq. The algebraic interpolation (15) served then as a weak 
constraint on the distortion function f({, q). Note that in order to make the picture 
legible, only every second of the q-coordinate lines were drawn. 

The mapping shown in Fig. 6 gives a coordinate system in the interior of the 
axisymmetric bubble, deformed by the flow. The distribution of the coordinate nodes 
at the surface of the bubble (i.e., the boundary correspondence x(1, q), ~(1, II) at the 
boundary r = 1) was taken from the mapping of the exterior of the bubble (see Fig. 4) 
which was obtained previously as a part of the solution of the fluid mechanical 
problem using the strong constraint method. The boundary conditions for x(& q) and 
y(<, q) at r = 0, v = 0, and r7 = 1 were assumed to be the same as in Section 4a (see 
(7) and (8)) and hence, they too satisfy (9) for any distortion f(& a). Thus, f(r, q) 
must be specified independently at 4 = 0, q = 0, and q = 1. If < = 0 is to be a concen- 
tration point of the coordinate system, then f(0, g) should be equal to zero, and if 
f(r, 0) and f(<, 1) are taken to be linear functions of <, one obtains the simplest 
possible variety of the algebraic weak constraint 

which was, in fact, used to construct the mapping in Fig. 6. 

FIG. 6. Interior of the deformed bubble obtained by the weak constraint method with the 
distribution of the points at the surface taken from the exterior mapping (Fig. 4). 
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FIG. 7. Orthogonal mapping by the weak constraint method with prescribed boundary correspon- 
dence on all four boundaries and algebraic interpolation (15) used as the weak constraint. 

In the last two examples, shown in Figs. 7 and 8, we consider mapping in a 
concave region whose shape is similar to a domain in which the recent method of 
Haussling and Coleman [8] failed to produce an orthogonal grid even for shapes with 
smaller boundary curvature. It is important to note that the boundary correspondence 
in Figs. 7 and 8 was prescribed on all four boundaries. The mapping in Fig. 7 was 
computed with the weak constraint given by (15). The mapping in Fig. 8 was 
obtained using (15) multiplied by (1 - 0.8 sin zc sin XV) as the weak constraint. 
Comparing Figs. 7 and 8, it can be seen that the form chosen for the weak constraint 
does provide a degree of control over the spacing of the coordinate grid inside the 
domain; however, the main features of the mapping are determined by the prescribed 
boundary correspondence. Though the numerical examples that we have considered 
show that an orthogonal mapping can be computed with a prescribed boundary 
correspondence for reasonably complicated geometries, they do not, of course, prove 
either the existence or uniqueness of such mappings for arbitrary geometries and/or 
boundary correspondence. This is a very important and interesting question, but one 
that is far beyond the scope of the present study and probably requires the attention 
of theoretical mathematicians. 

A final important point about the weak constraint method concerns the 
prescription of the boundary correspondence. Apart from the difficult question of the 
existence of a mapping, some care must also be exercised to minimize the possibility 
of the resulting coordinates being ill-suited for numerical solutions. Consider, for 
example, the problem of generating orthogonal coordinates inside an acute angle with 
coordinate nodes distributed in equal increments along the sides. Evidently, 
orthogonal coordinates can be generated quite easily if these nodes are connected by 
one family of coordinate lines, with the other family emanating from the vertex (thus 
giving, essentially, polar coordinates inside the angle). However, if it were assumed 
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FIG. 8. Same as Fig. 7 but the weak constraint is now (15) multiplied by (1 - 0.8 sin nl sin nq). 

that the side boundary nodes belonged to different families of coordinate lines (as 
might initially seem to be the obvious choice if one were to think of the acute angle 
as being obtained starting from a right angle with Cartesian coordinates inside it and 
simply decreasing the included angle), the configuration of the corresponding coor- 
dinates is less obvious and the numerically generated coordinates would likely have a 
larger nonorthogonality error due to discretization. 

6. CONCLUSIONS 

The mapping techniques proposed in this paper provide a method for the 
construction of an orthogonal, boundary-fitted coordinate system in two dimensions. 
The strong constraint method of orthogonal mapping is obtained by specifyingf(& ‘I) 
throughout the l, v domain in advance and is especially suitable for cases when the 
shape of the boundary in the X, y plane is not known but is to be found as a part of 
the solution of some physical problem (“free boundary problems”). The weak 
constraint method of orthogonal mapping is obtained by specifying a rule which 
determines the values of f(& r) in the interior of the <, q domain as soon as its 
boundary values are known. *This method is capable of solving the most important 
and difficult problem, namely, the contruction of an orthogonal mapping with a 
prescribed boundary correspondence, or, in other words, the construction of an 
orthogonal coordinate system fitted to a boundary of given shape, with a prescribed 
distribution of coordinate nodes along this boundary. 

The governing equations of any physical problem of interest can be written out 
easily in the resulting orthogonal coordinate system in terms of physical components 
of vectors and tensors, using the standard expressions for invariant differential 
operations in orthogonal coordinates. Alternatively, the technique of tensor analysis 
can be employed directly for this purpose if the connection coefficients in the 
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orthonormal basis and a “physical tensor” notation (given in the Appendices) are 
used. 

The most serious rival of the present method is, of course, conformal mapping. The 
main advantage of conformal mapping is that a harmonic function of the x, y 
coordinates remains a harmonic function of the t, q coordinates. This reduces the 
solution of the Laplace equation on some domain in the x, y plane to a problem of 
finding the conformal mapping for this domain. However, this reduction is not of 
much help unless a conformal mapping function has already been tabulated; 
moreover, the solution of the Laplace equation, though significant, is certainly not the 
only important problem to be solved. 

The important drawbacks of conformal mapping include the difficulty of 
construction by the direct approach, closely connected with the inability to prescribe 
the boundary correspondence, and the potentially poor quality of the resulting grid 
for numerical solutions. The method proposed here for orthogonal mapping is free of 
these problems. In addition, it has the potential of extension to a three-dimensional 
space. 

APPENDIX A: CONNECTION COEFFICIENTS IN ORTHONORMAL BASIS 

In order to use the orthogonal mapping techniques which are presented in the main 
body of this paper, it is necessary to express the governing differential equations and 
boundary conditions of a physical problem, which are normally given in terms of the 
invariant differential operators for vectors and/or tensors, in terms of a general 
orthogonal coordinate system. In most instances this can be done by simply using the 
standard expressions for the various invariant differential operations in orthogonal 
curvilinear coordinates which are given in numerous texts and require only a 
knowledge of the scale factors hi. However, expressions for some differential 
operations are not readily accessible, and it is necessary, in general, to have a method 
available for their derivation from the invariant (tensorial) form. The most commonly 
advocated approach is to use the expression for the V operator, together with the 
expressions for the spatial derivatives of the unit basis vectors. This is a rather 
cumbersome and outdated procedure in comparison with the powerful technique of 
tensor analysis; the trouble is, however, that the connection coefficients, which are 
necessary for covariant differentiation, are usually given only for a coordinate basis 
(whose vectors e, = 8r/8ri are not generally of unit length). In this case (only) they 
are called “Christoffel symbols.” Correspondingly, covariant differentiation can 
usually be performed only for covariant and contravariant components of vectors and 
tensors. 

In the case of an orthogonal coordinate system, it is highly preferable to use an 
orthonormal basis (whose basis vectors ef- ei/hi are of unit length) and physical 
components of the vectors and/or tensors. In this case, we need only the normal rules 
for covariant differentiation and the connection coefficients for an orthonormal basis. 
These connection coefficients are derived easily, following the methods of [ 141 (see, 
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in particular, Chap. 8), but we do not intend to spell out the details here. Instead, we 
simply state the results, first using the standard notation of tensor analysis. In 
Appendix B, a much simplified notation is introduced for “physical tensors,” which is 
a natural and obvious extension of the Cartesian tensor formalism. 

We use the gradient of a second rank tensor, say 

as a suitable invariant object (a third rank tensor) for illustration purposes. This 
entity can be expressed for any particular coordinate system in terms of its 
components calculated in any basis according to the rules of covariant (absolute) 
differentiation (denoted by the semicolon “f’) 

where indices run through 1, 2, 3 and summation over repeated indices is implied. 
The connection coefficients are denoted rr’, and the comma “,” indicates differen- 
tiation of the tensor component as if it were a scalar (for example, f,k indicates the 
kth component of the gradient of a scalar fleldf). It should be noted that this “scalar 
differentiation” coincides with partial differentiation a/&$ only in a coordinate basis; 
in the orthonormal basis it is given by 

Scale factors h,, being a shorthand notation for (gJi’*, are exempt from the 
summation convention. Carets are employed to indicate the use of an orthonormal 
basis. 

Now, in a general three-dimensional ‘space, there are 27 connection coefficients. 
However, in an orthonormal basis, only 12 are nonzero, and these can be expressed 
in the compact form 

r$, = -&, = h,,,/h, (m # n, no summation). 

The general rule for covariant differentiation, together with formulas (Al) and (A2) 
are all that is needed to write any differential expression in terms of physical 
components in a general orthogonal coordinate system. 

APPENDIX B: A SIMPLIFIED “PHYSICAL TENSOR” NOTATION FOR 
COVARIANT DIFFERENTIATION IN ORTHOGONAL COORDINATES 

An orthonormal basis (with a positive definite metric) is identical with its dual 
(reciprocal), so that covariant and contravariant components coincide (and are called 
“physical”) and the usual distincton between these quantities, by the use of upper and 
lower indices, becomes unnecessary. In other words, the metric tensor of an 
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orthonormal basis is always a unit tensor, i.e., gtj= 6,. (This tensor should be 
distinguished, however, from the metric tensor of the coordinate basis g,, which is 
used in the main body of this paper and is often called “the metric tensor of the coor- 
dinate system” because it defines the line element.) Although an attempt has 
previously been made to formulate the rules of tensor calculus specifically for 
physical components (see Ericksen [23]), the resulting rules have not found 
application, apparently due to notational inconvenience. Here, a much simplified 
notation is introduced which is a natural generalization of Cartesian tensor 
formalism. Since the physical components are by definition (see McConnell (241) the 
components in the local Cartesian coordinate system, whose basis vectors coincide 
with the orthonormal basis vectors at a given point, the similarity between physical 
and Cartesian tensor analysis is not surprising. 

The transition to a simplified notation for physical tensors from the general 
covariant formalism is accomplished by writing all indices of tensor or vector 
components as subscripts and switching to the convention of summation over 
repeated subscripts which is typical of Cartesian tensors. The carets, which indicated 
an orthonormal basis before, will be dropped since we deal with orthonormal bases 
only. All tensor algebra for physical tensors is formally identical to Cartesian tensor 
calculus, but the rules of differentiation are different. Specifically, the gradient of a 
tensor tield G = VT is calculated according to the following rule of covariant 
(meaning here “invariant”) differentiation for physical tensors 

Gij...nk-T,j...,;k=Tii...“,k+rilkTlj...n+rj,kTil...n+...+rn,kTij...,, (Bl) 

where the comma “,” denotes scalar differentiation defined by 

(as always, scale factors hi are exempt from the summation convention). 
For a Cartesian coordinate system where 

all hi= 1, all r=O 

rule (Bl) reduces to the familiar partial differentiation of Cartesian tensor calculus. 
Otherwise, one has to correct for the change of scale (thus (B2)) and for the variation 
of basis vectors in space (the “I’T terms in (Bl), one for each index of T). To 
remember the pattern of these latter terms, the following mnemonic rule is useful: (1) 
The last index of r is always the differentiation index; (2) The index being corrected 
shifts to the first subscript on r and is replaced on T by a dummy summation index, 
identical to the middle index on r. The 12 nonzero connection coefficients can be 
taken directly from (A2), 

1 ah. riji = -r,,i = hi,j/hi E - 2 
hihj a<j 

(i +j, no summation). 



98 RYSKIN AND LEAL 

The basic rule of tensor analysis is that a tensorially correct equation (formula), 
which is true in a particular coordinate system (say, Cartesian), is true in any other 
coordinate system. It is thus evident that a physical law expressed in terms of the 
physical components for some arbitrary orthogonal system is formally identical to its 
component form for Cartesian tensors, provided only that ordinary partial derivatives 
with respect to coordinates are replaced by covariant derivatives, i.e., one simply has 
to substitute a semicolon for the symbol used to indicate partial differentiation in the 
Cartesian expression and then use (Bl). This makes relatively complicated 
differential expressions very easy to calculate assuming a familiarity with the 
corresponding Cartesian tensor quantities. By way of illustration, we may consider 
the derivation of formulae for the physical components of the rate-of-strain tensor in 
a general orthogonal coordinate system. A diagonal component, such as e,, , is 
simply 

while the off-diagonal (2, 3) component is 

e23 = f&3 + u3;2) = h2.3 + r213UI + u3,2 + r312”I) 

1 1 au, u3 ah3 1 au, ~2 ah, 
=- ---- 

2 ( h, X3 h,h, X2 -+h,ay,--- * h,h, X3 i 

Although these formulas are identical to those derived by direct differentiation of the 
basis vectors (see, e.g., [25, p. 600]), they are obviously much easier to obtain using 
the physical tensor notation. 

So far we have been dealing with general orthogonal coordinates in 3-D. However, 
the orthogonal coordinate system used in practice is most likely to be axisymmetric 
or two dimensional, in which cases even fewer connection coefficients remain 
nonzero. Consider first the axisymmetric case, with t3 E v, being the azimuthal angle. 
In this case, h, = o, where u is the distance between the point of interest and the 
symmetry axis, and only eight connection coefficients remain nonzero 

1 ah, 
r,21 = -r21, = h,,,/h, E -- 

h,h, a<, ’ 

1 ah, 
rz12 = -Tlz2 = h,,,/h, E --, 

h,h, at, 
P4) 

r,,, = -rlx3 =0,,/0 

In the two-dimensional case with & = z and h, = 1, only ri2i, r,,, , r2i2, and rlz2 
remain nonzero. 

The formalism presented above provides an easy method for writing any 
differential expression in terms of physical components for the boundary-fitted 
orthogonal coordinates (<, II, p) whose construction we have discussed in the main 
body of the paper. A final quantity of interest, relevant to the boundary conditions in 
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some problems, is the boundary curvature. The geometric definition of the connection 
coefficients for the orthonormal basis (see [ 14, Chap. 81) is 

rijk E (i component of the rate of change in ej along e,J. 

Thus. it is evident that 

where K$ is the normal curvature in the direction ej of the coordinate surface with 
normal e, and K$ is the geodesic curvature of the rj coordinate line on the same 
surface (note, there is a slight difference here from the classical definition of geodesic 
curvature which usually takes it to be always positive; see [15, 241). 

If one considers the rj coordinate line as a curve on the coordinate surface 
& = const, the geometrical meaning of rijj and rtij is reversed, i.e., 

rijj = -K$, rwj=K;$', 

The half-sum of the normal curvatures in two perpendicular directions [say, K$) and 
K:$'] gives the mean curvature of the surface; and since the coordinate lines of an 
orthogonal coordinate system are also the lines of curvature of a coordinate surface 
([ 15, p. 195]), these normal curvatures are also the principal curvatures and hence 
their product gives the Gaussian (intrinsic) curvature of the surface. 
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